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On the influence of spin fluctuations on the 
superconducting transition temperatures of transition 
metals 

R C Zehder and H Winter 
Kernforschungszentrum Karlsruhe, Institut fur Nukleare Festkorperphysik, PO Box 3640, 
D-7500 Karlsruhe, Federal Republic of Germany 

Received 14 December 1989 

Abstract. We develop an ab initio theory for the combined influence of phonons and spin 
fluctuations on the superconducting transition temperatures, Tc, of transition metals. The 
ingredients of the Eliashberg equations, like the electronic structure, the spin fluctuation 
spectrum and the coupling function, are calculated in the local density functional-random 
phase approximation without introducing adjustable parameters, whereas the spin-inde- 
pendent part of the Coulomb interaction is treated using a McMillan parameter. We describe 
the steps involved in transforming the Eliashberg equations into a numerically tractable form 
without resorting to jellium model-like assumptions. For the case of vanadium we find that 
spin fluctuations reduce T, substantially below the value corresponding to the pure phonon 
mechanism. 

1. Introduction 

Most of the theoretical investigations of superconducting transition temperatures, T,, 
in the past aimed at an ab initio treatment of the electron-phonon coupling mechanism 
(e.g. Gaspari and Gyorffy 1972, Gomersall and Gyorffy 1974, Butler et a1 1976, Papa- 
constantopoulos etal1977, Winter eta1 1978, Rietschell978, Glotzel etall979, Jarlborg 
etall983). Band-structure work yielded both the electronic quantities and the electron- 
phonon coupling matrix elements in rigid muffin-tin approximation (RMTA) (Mott and 
Jones 1936). Efforts to go beyond the RMTA-especially important in the case of simple 
metals-have also been undertaken (Winter 1981). The phonon modes have been 
obtained using shell models (Weber 1973) or in some special cases via microscopic 
calculations (e.g. Varmaand Weber 1979,Hoetal1982, Weber 1984). Inthisway reliable 
phonon kernels for the Eliashberg equations of both the normal and the anomalous self- 
energies became available. The Coulomb interactions on the other hand have been 
taken into account in a crude manner through the use of McMillan’s parameter ,U * , whose 
value was put equal to something like 0.13 (McMillan 1968). The largest discrepancies 
between the results of these kinds of theories and experiment among the systems 
investigated turned out to occur for vanadium and its compounds. 

Later on a correlation between the degree of failure in predicting the correct T, and 
the value of the static homogeneous spin susceptibility was pointed out (Rietschel and 
Winter 1979). This observation motivated the effort to treat the coupling of the electrons 
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to spin fluctuations on the same footing as the phonon mechanism, as Berk and Schrieffer 
(1966) had previously done for Pd. A substantial reduction of Tc below the value resulting 
from the phonon mechanism alone has indeed been found for V and some of its 
compounds (Rietschel et a1 1980). 

However, neglecting band-structure effects and the crystalline lattice, this work 
treats the spin fluctuation mechanism in jellium model approximation involving the 
introduction of parameters fitted to the experimental Stoner enhancement and the spin 
fluctuation contribution to the effective mass of the electrons. It should be mentioned 
that it is hard to extract the latter quantity unambiguously from experiment. Especially 
in the case of Pd this kind of theory proved unable to explain the observed low value of 
the electronic mass enhancement satisfactorily. 

In previous work we developed a formalism for calculating the wavevector- and 
frequency-dependent spin susceptibility of paramagnetic metals in local density func- 
tional-random phase approximation (LDA-RPA) (Stenzel and Winter 1985). In our appli- 
cation to V and Pd (Stenzel eta1 1988) we calculated the fluctuation spectra, the electron 
spin fluctuation coupling matrix elements and the electronic mass enhancements. We 
obtained small values for the quantities (m*sP - m)/m (0.16 for Pd and 0.11 for V), 
numbers that are compatible with experiment. 

In this paper we present an ab initio T, theory, describing the combined influence 
of phonons and spin fluctuations within LDA-RPA and implementing the Eliashberg 
equations with the effects of the band structure and the crystalline lattice also in the spin 
fluctuation parts. The spin-independent part of the Coulomb interaction on the other 
hand is treated using a McMillan parameter, p * .  We discuss applications on vanadium. 
The paper is organised as follows. In section 2 we set up the Eliashberg equations in 
terms of explicit expressions for the phonon and the spin fluctuation kernels. Further 
details concerning this point are given in the appendices 1 and 2. Section 3 is devoted to 
the display and the discussion of the phonon and the spin fluctuation excitation spectra, 
whereas section 4 sheds some light on the problems encountered in and the methods 
employed to deal with the numerical aspects. Results for the normal self-energy of V 
are presented in section 5 and in section 6 we discuss the numerical solution of the gap 
equation. We conclude with a short summary in section 7. 

2. The derivation of the linearised Eliashberg equations 

For the part of the anomalous self-energy, Z+-’P, of the electrons that is due to their 
interaction with spin fluctuations we use the following expression: 

Here, g and g(r, r l ,  E,) = g ( r l ,  r ,  -cm) are the one-particle Green functions of the 
normal state, xS is the spin fluctuation propagator and KiC is the electron-spin fluctuation 
coupling potential (Stenzel and Winter 1985). The E, and E, are Fermi-Matsubara 
frequencies. As a consequence of the broken translational invariance, the propagators 
depend on two real-space coordinates. 
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Restricting ourselves for the sake of simplicity of notation to systems with one atom 
in the unit cell, we perform a lattice Fourier transformation on equation (2.1), that is we 
use the k, q representation of Zak (1972). We obtain 

In equation (2.2) the local coordinates p,  p’ are restricted to a Wigner-Seitz (ws) cell 
and the momenta q, k are confined to the first Brillouin zone (BZ) with volume QBZ. 

The lattice structure of the system allows for the following representation of g :  

Here, the Y are one-particle wavefunctions, which are simultaneously eigenfunctions 
of the lattice translation operators, v is the band index and the E,,, are the band energies. 
We assume that similar representations hold for other quantities approximately as well. 
Starting from some quantity A,@, p ’ ,  E , )  we define the transform A via the following 
relation: 

Applying the transformation (2.4) on equation (2.2) we obtain after some straight- 
forward manipulations 

Here, gS is the normal self-energy and the matrix elements of the spin fluctuation- 
electron coupling function, Ms* x xS x M s ,  are defined through the relation: 

An explicit expression for Ms* x xS X M S  in terms of the coefficients of the local, angular 
momentum decomposition of Y and xS is given in appendix 1. 

In the form of relation (2.5) the equation for z+- is a matrix equation in the 
Matsubara frequencies and the band indices and a three-dimensional integral equation 
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in the momentum variable. To simplify things, we define the quantity A(&,, x) depending 
on the continuous energy variable x via the relation 

A(&,, x) is an average of E + -  over the momenta q and the bands v at energyx. Inserting 
the expression (2.7) into equation (2.5) we get 

ASP(&, , = c j dy K S P ( ~ ,  y,  E , ,  y> (2 * 8) 
m 

whereby the kernel, KSp, of the spin fluctuation coupling mechanism is defined by the 
relation 

x X:-k(Em - 8 , )  x ~ ' ( k f i ,  qv){[Im(Em + z ; ( & m > ~ ) ) I ~  

+ [y - E F  + Rezi(Em,y)I2}-'. (2.9) 
In deriving equations (2.8) and (2.9) we approximated both the normal and the 

anomalous self-energy on the RHS of equation (2.5) with their averages over the energy 
shells y .  This may be considered as a generalisation of the 'dirty limit' approximation 
frequently applied in work dealing with the phonon mechanism alone. This approxi- 
mation is strongly supported by the results of Peter et a1 (1982), who investigated the 
influence of Fermi-surface anisotropies on the superconducting transition temperatures 
of some d-band transition metals and found only minor effects. 

To complete our setting up of the gap equation, we add the following expression for 
the phonon kernel used in the present calculation and derived, for example, by Glotzel 
et a1 (1979): 

k p h o n ( ~ ,  , E m )  = (n/P)A(Em - ~ n ) / l  Em + Im g(Em 3 E F )  I (2.10) 

with 

(2.11) 

and 

kphon(e,, E,) = J dy K p h o n ( ~ F , y ,  E , ,  E ~ ) .  

Here, eqA and wql are the phonon polarisation vectors and frequencies, respectively. As 
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Figure 1. The phonon density of states of vanadium calculated using the double shell model 
of Weber (1973). 

we use the RMTA for electron-phonon coupling, VV is the gradient of the crystalline 
electron potential in muffin-tin form (Gomersall and Gyorffy 1974). Owing to the limited 
energy range of the phonon spectrum (U,,, = 32 meV) the variablex has been confined 
to sF. Further details are given in appendix 2. 

Collecting equations (2.8) to (2.10) the gap equation finally reads 

A ( E ~ , x )  = ~ j d y [ K p h " ' ( X . Y , & n , & m )  + K S P ( x , ~ , ~ n , ~ m )  -p*]A(&m,y). (2.13) 
m 

In equation (2.13) the spin-independent part of the Coulomb interaction has been taken 
into account via the McMillan parameter p * ,  a procedure that may be justified if the 
phonon and the spin fluctuation spectra are clearly separated from the energy range 
where appreciable charge density fluctuation amplitudes occur. 

3. The fluctuation spectra 

The phonon spectrum has been obtained using the double shell model of Weber (1973) 
and fitting its parameters at first to the measured phonon dispersions of the similar 
system Nb. With the help of a rescaling factor, which turned out to correspond up to 5% 
with the V-Nb atom mass ratio, the resulting shell model phonon density of states (DOS) 
has been fitted to the measured one afterwards. The phonon spectrum (figure 1) exhibits 
the usual transverse and longitudinal phonon peaks and extends up to 32 meV. 

The spin fluctuation spectrum has been taken from the work of Stenzel et a1 (1988), 
who calculated the full matrix 2 defined in equation (Al.3) and needed for establishing 
the kernel, ZP,  of the gap equation. To give a general impression of its behaviour we 
draw the diagonal part, Im f ( q ,  q;  w ) ,  of the double real-space Fourier transform of its 
imaginary part in figure 2 as a function of frequency and for some wavevectors q in (100) 
direction as parameters. Im f ( q ,  q;  o) is defined through the relation 

Im x s ( q ,  q ;  o) = i i  d p  d p '  e-'q(p-p') Im x i ( p ,  p ' ;  o). (3.1) 

The sharp structures at small wavevectors and frequencies are due to intraband tran- 
sitions within bands 2 and 3 ,  which build up the Fermi surface. More and more interband 
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Figure 2. The spin fluctuation spectrum of V, Im p ( q ,  q, U), as a function of frequency w 
for some q-values in the (lOO)-direction (q is in units of 2 n / a )  as calculated by Stenzel et al 
(1988):(a)lqI =O.OS(---),/q/ = 0 . 1 ( . . . . . . . . ) , ~ ~ ~ = 0 . 2 ( - . - . - ) , ( q l  = 0 . 4 ( - ) ; ( b ) l q l  = 
0.6(-) ,1ql=0.8(. . . . ) , lq1 = 1.0(---). 

transitions play a role on increasing q and the energy extent of the curves increases, 
while their amplitudes diminish and the structures get washed out. As the subsequent 
investigations of this paper show, spin fluctuations up to about 5 eV influence T, sig- 
nificantly. Electron loss spectrocopy (ELS) measurements (Simmons and Scheibner 1972, 
Misell and Atkins 1972, Wehenkel and GauthC 1975) on the other hand show that the 
density fluctuation spectrum peaks at about 20 eV, showing extremely broad features. 
Its main amplitudes occur at energies appreciably above 5 eV. In the light of these 
findings our approximation to treat the spin-independent part of the Coulomb inter- 
action via p* seems to be justified. 

4. Numerical aspects 

Self-consistent Korringa-Kohn-Rostoker (KKR) band-structure calculations have been 
performed to obtain the six lowest conduction bands of V. Subsequently, the Bloch state 
coefficients, and the energy eigenvalues, E&,,, have been evaluated on a dense 
equidistant k-mesh (up to 100 k-points per ray) along 136 rays approximately uniformly 
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distributed over the irreducible wedge of the Brillouin zone (IWBZ), emanating from the 
r-point and ending at the BZ boundary. This mesh is used to subdivide the IWBZ into a 
space-filling network of small volume elements, Pi, (compare Winter et a1 1988). 

In order to evaluate the kernels of the gap equation (equations (2.9) and (2.12)) we 
need to spot the zeros of the arguments of &functions like 6(x - for wavevectors q 
within the IWBZ. Integrals like J dq  6(x - eqv) are piecewise performed over all the 
volume elements P$ that contribute. We employ thereby techniques similar to those 
explicitly described by Winter et a1 (1988). The factors multiplying the &functions are 
replaced by their averages over the corners of each individual volume element Pi,. In 
the case of the coupling functions Ms* x xs X M’ (equation (A1.5)) and the Bloch 
state coefficients (equation (A2.1)), averaging over larger regions of the IWBZ proved 
sufficient. For this purpose the IwBzhas been subdividedinto 40 regionsof approximately 
constant volume. The integration of q and k over the whole BZ instead of the IWBZ has 
been achieved by applying the 48 O h  point group symmetry operations on the factors of 
the &functions, thereby exploiting the symmetries of the &kv and the c{:!~. 

5. The normal self-energy and the electron mass enhancement 

In analogy to equation (2.7) we define a quantity Z(E, ,  x )  as the average of & ( E , )  over 
the energy shells x :  

Using the standard derivation for the phonon case we obtain 

in  
X P ~ O ~ ( E , ,  E F )  = -2 A ( E ~  - E , )  sgn(E,/i) ( 5 4  

P m  

and for the mass enhancement of the electrons due to their interactions with the phonons 
we get 

m* phon 
-- 

m (5.3) 

The quantities A(&,) and a2F(w) are defined through equations (2.11) and (2.12), 
respectively. The techniques used in the evaluation of the normal self-energy are the 
same as those sketched in section 4 in connection with the calculation of the kernels. We 
obtain 

,*phon 

1 = 1.03 -- 
m 

a number that is in the range of previously published results (Butler et a1 1977, Collela 
and Batterman 1970). 

The equation for the normal self-energy due to the electron-spin fluctuation coupling 
mechanism reads in the weak coupling limit: 
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As a starting point for the calculation of the low-temperature effective mass we use the 
following formula: 

a 
d r  d r '  Im g(r, r ' ;  E F )  6(r - r ' )  - - M(r, r ' ;  E )  a& 

m* -2 
( 5 . 5 )  

Equation (5.5) has been derived by Luttinger (1960), Luttinger and Ward (1960) and 
Riedel (1968). In the way written above it may be applied to the case of broken 
translational symmetry. Approximating Im g by its band-structure value we end up with 
the following relation: 

with 

E ,  = (n/p) i(2n + 1). 

We get 

A,, = (m*sP/m) - 1 = 0.14. 

Use has thereby been made of the analytical properties of 2 and its nearly linear energy 
dependence near 

This value is sufficiently close to the number recently obtained by Stenzel et a1 (1988) 
(Asp = 0.11) using slightly different numerical methods, whereby one should keep in 
mind that in the present calculation we did not subtract off the single bubble double- 
counting term (Riedel1968). 

The real part of zsP (real in the complex Matsubara frequency representation) turns 
out to be insignificant. 

The influence of Green function renormalisation effects on m*,P, neglected in the 
present treatment, have been investigated by Fay et a1 (1988). They find considerable 
effects for highly Stoner-enhanced systems with A,, in the range of 3. In the case of the 
moderately Stoner-enhanced metal V, we expect them to be of less importance. 

6. The solution of the gap equation 

The task is to find the highest temperature T = T, at which the linearised gap equation 
(equation (2.8)) has a non-trivial solution for A .  In contrast to the pure phonon mech- 
anism, the spin fluctuation kernel introduces the energy variables x and y .  A possible 
method to treat this additional degree of freedom consists of subdividing the x ( y )  space 
into intervals, I,, defined through the relation 

I, : x, - Ae(n) s x S x ,  + Ae(n).  (6.1) 

A similar relation holds for y .  
Within the intervals Z,, A(&,, x )  is approximated by its average value 

x ,  + A W , )  
A ( & , , n )  =- dx  x). 

The choice of the number and the sizes of the regions Z, depend on the behaviour of KSP 
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Figure 3. An illustration of the dependence of the 
spin kernel K"P(x,y, E,, E,) on the energy variable 

6 5  7 5  8 5  9 5  1 0 5  115 x .  Drawn is the quantity Ksp(x, E ~ ,  E",  E , ) )  for x in 
a range of about 4 eV around the Fermi energy. 

0 * ""L 
x (eV1 

of the system in question. In this way we cast the gap equation into the form of a matrix 
equation in both the Matsubara frequencies and the indices n of the energy intervals I,. 

Our investigations show that in the case of V the situation is especially simple. First 
of all-due to the denominator l/[Im(E, + g)2 + (y + Re 2)2] in equation (2.9)--K"P 
decreases sufficiently fast with increasing y forx-values not too far away (some eV) from 
the Fermi energy. Its dependence on x on the other hand is rather smooth. To visualise 
this behaviour, we draw the quantity KSP(x, E ~ ,  E ~ ,  in figure 3 as a function of x within 
an interval of about 4 eV in the vicinity of E ~ .  Because this energy range turns out to 
determine predominantly T,, it therefore seems reasonable to replace A(&,, x )  on the 
LHS of equation (2.13) with A(&,) = A(&,, E ~ ) .  On the RHS we replace A(&,, y )  with 
A(&,) and integrate the kernels over their variable y, ending up with the following 
simplified form of the gap equation: 

A(&,) = [RphyE,, E , )  + RSP(E,,, E , )  - p * ] A ( E m )  (6.13) 
m 

with 

The y-integration in equation (6.4) comprised the energy range of the six lowest con- 
duction bands, whereby the contributions of bands 4 to 6 turned out to be rather 
insignificant. 

In figure 4 we exhibit Z@(E,, E,)  as a function of E ,  for some E ,  as parameters. The 
contributions coming from combinations of bands 2 and 3 are drawn in figure 4(a), 
whereas figure 4(b) shows the total spin kernel I&'. @!'(E,, E , )  drops sharply with both 
increasing E ,  and E,. As @Pis a smooth function of these variables, it is easy to interpolate 
it, using the interpolation scheme of Stor and Bulirsch (1980) on any discrete Matsubara 
frequency mesh determined by the actual temperature Ta t  which a solution of the gap 
equation is sought. In our calculations we included Matsubara frequencies up to E,,, = 
12 eV. Up to 0.4 eV we took account of all E,, whereas the energy range between 0.4 eV 
and E,,, has been subdivided into intervals, I,. Within each interval, I,, we replaced A 
with its average value and summed @P over the Matsubara frequencies contained in I,. 
The maximum number of intervals Z, amounted to 40. 

The choice for the employed value of p* comes from the following argument. In 
niobium the amplitudes of the spin fluctuations seem to be rather small. The value of p* 
in this system is therefore likely to be mainly attributable to the spin-independent part 
of the Coulomb interaction. This quantity in turn is determined by the coupling of the 
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Figure 4. The spin fluctuation kernel, @'(E,,, E, ) ,  as a function of frequency E, for some E, 

values at T = 10 K. (a )  Intraband contributions: band 2, n = 1 (........), n = 4 (- - -), n = 8 
(-.-); band 3, n = 1 (-), n - 4  (. . . .), n = 8 (---). ( b )  The total spin fluctuation 
kernel used in the present calculations: n = 1 (-), n = 4 (........ ), n = 8 (- - -), n = 18 
(-.--), n = 40 (. . . .). 

Table 1. The calculated superconducting transition temperature T, of V as a function of the 
cut-off parameter .smilxr ignoring and including spin fluctuations. 

T, ignoring spin T, including spin 
&ma, (ev)  p* fluctuations (K) fluctuations (K) 

0.19 5wDebge 0.13 19.43 8.43 
0.95 2 25wDebye 0.15 19.48 9.23 
9.1 24OwDeb,, 0.225 19.46 9.48 

12 2 320wDebye 0.243 19.44 9.48 

electrons to the density fluctuations. As the experiments of Wehenkel and GauthC (1975) 
and Misell and Atkins (1973) show, the fluctuation spectra of V and Nb are similar, 
which is hardly surprising in view of the fact that these substances are in the same column 
of the periodic table. It therefore seems reasonable to use the number 0.13 for y* at a 
cut-off of 5wDebye, proposed by McMillan (1968) in the case of Nb, for V as well. 
Because the purpose of the present paper is to demonstrate the importance of the spin 
fluctuations, a more profound investigation of the role of the spin-independent part of 
the Coulomb interaction will be postponed to future work. To obtain T, we applied the 
procedure devised by Bergmann and Rainer (1973). The gap equation is cast into the 
form of an eigenvalue problem and the kernels are augmented by a pair breaking 
parameter, p .  For a given value o fp  the highest temperature, T, (p ) ,  is sought for which 
a solution of the gap equation with eigenvalue A. = 1 exists. An iterative procedure in a 
two-dimensional subspace is thereby applied. If this procedure is carried through for a 
couple ofp-values, the desired transition temperature, T, = T,(p = 0), can be found by 
extrapolation. To test the influence of the frequency cut-off, emax, on T, we performed 
the calculations for values of E,,, below 12 eV as well. Our results are collected in table 1. 

To explore the precise cut-off dependence of y * we solved the gap equation switching 
off I@ at first. Then ,U* has been adjusted such that the calculated transition tempera- 
tures, Tghon, were independent of E,,,. Column 2 of table 1 shows the corresponding 
values. They scale nearly according to the following rule, derived by Bogoliubov (1958): 
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The same values for ,U* have been used in our T, calculations (column 4 of table 1). The 
results clearly show that the cut-off .smax = SowDebye is sufficiently high. 

Our T, values, TPhon, based on the phonon mechanism alone (column 3 of table 1) 
corroborate the results of previous calculations (Glotzel et a1 1979): TPhon is near 20 K 
and lies far above experiment (TYP = 5.4 K). As column 4 of table 1 shows, the spin 
fluctuations reduce T, by as much as roughly a factor of 2. One might wonder why 
their influence on T, is so sizeable though their contribution to the electronic mass 
enhancement is relatively small. The cause of this is that the spin fluctuations enter the 
anomalous self-energy in a different way from the normal self-energy. This can be seen 
by considering the following quantity, g: 

g=(P/n)IIm[&m +e(&m)Il  IRSP(~O,~O)l. (6.6) 

The quantity g may be considered as a measure for the strength of @. In the case of V 
we obtain g = 0.225, a value that is considerably higher than the spin fluctuation mass 
enhancement. The corresponding quantity, gphon, on the other hand, is identical to the 
mass enhancement due to the electron-phonon coupling mechanism. 

7. Summary 

We presented a theory for the superconducting transition temperature of transition 
metals in the frame of the local density functional theory and the RPA, and applied it to 
V. Its ingredients are the electronic structure, the phonon and spin fluctuation spectra 
and their coupling to the electrons. Except for the shell model parameters of the phonon 
spectrum, these quantities contain no adjustable parameters, thus superseding previous 
work (Rietschel and Winter 1979) employing jellium-like models. Furthermore we 
discussed numerical methods for setting up and solving the Eliashberg equations in the 
case of a crystalline lattice. In qualitative agreement with previous work (Rapp and 
Craford 1974, Rietschel and Winter 1979) we showed that spin fluctuations are able- 
at least within the LDA-RPA approximation-to lead to a considerable depression of T, 
as compared with the number due to the pure phonon mechanism. We gave an argument 
as to why this can happen in spite of the low value of the spin fluctuation mass enhance- 
ment. 

In spite of this significant effect the calculated T, is still appreciably higher than the 
measured one. In this connection it is interesting to note that the T, calculations of 
Glotzel et a1 (1979) for Nb, using p" = 0.13, overestimate the experimental number for 
this substance as well. In our opinion these findings suggest that in neither V nor Nb is 
the effect of the spin-independent part of the Coulomb interaction on T, adequately 
accounted for by such a small value for p* as proposed by McMillan (1968). To investigate 
this point further we intend to treat the density-density correlations and their coupling 
to the electrons within the RPA-LDA in future work and to implement them to the 
Eliashberg equations. It remains to be seen whether this can lead to a systematic 
description of the trends in the superconducting transition temperatures of transition 
metals. 
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Appendix 1 

The local angular momentum representation of a Bloch state, Wk,(p) reads in the 
framework of the KKR band-structure method: 

(Al. 1) 

The c are the Bloch state coefficients, the Y,, are the real spherical harmonics and the 
RI are the energy-dependent radial parts of the single-site eigenstates in the muffin-tin 
potential. 

p ’ ;  E ,  - 
E ~ ) ,  of equation (2.2) may be written in the following form: 

Using the Kramers-Kronig relation the spin fluctuation propagator, 

(A1.2) 

For xi@, p r ;  o) the following representation has been derived by Stenzel and Winter 
(1985) : 

l l . K 1 , / 2 , K 2 ,  
/ i . K i , / z . K 2  

i@J ( Im1l  1 1 Z K 2  I”m’li K ;  l ~ K ~ ) y / ’ m ’ ( p ’ ) R / ~ K ~  ( P ’ ) R / i K i  (P ’ ) ’  (A1.3) 

For the definition of i see Stenzel and Winter (1985) and Stenzel et a1 (1988). The RI ,  
are the radial coordinate-dependent energy expansion coefficients of RI ,  defined through 
the relation 

r 

(A1.4) 

(A1.5) 

Here, the G are the Gaunt coefficients with respect to real spherical harmonics. 



Influence of spin fluctuations on T, of TM 7491 

Appendix 2 

With the help of the Bloch states representation (equation (Al . l ) )  it is straightforward 
to cast the expression for the phonon Eliashberg function (equation (2.12)) into a form 
amenable to numerical treatment. It reads 

x Y ~ ( e , - , . * ) Y ~ ' ( e , - k . ~ ) G ( l m ,  llm1, l2m&Wm', /;mi, 

x {sin[a/,(EF) - ~ / ~ + l ( E F ) l A / z . / ~ + l  + s i n [ d / , ( ~ ~ )  - 8 / z + ~ ( ~ ~ ) 1 A / 1 . / 2 + ~ }  

{sin[a/;(&F) - a/i+l(&F)IA/2,/i+1 -t sin[a/2(EF) - a/2+l(EF)lA/i./2+l} 

x ( N / ]  NI2N,; N,;  1 - l .  (A2.1) 

Here, use has been made of the relation between the matrix elements of the gradient of 
the muffin-tin potential between the wavefunctions &(p,  sF) and the phase shifts 
(Gaspari and Gyorffy 1972). The normalisation factors are defined in the following way: 

N /  = [ j / ( G r m t )  cos a/(&F) - n / ( G r m t )  sin G/(EF>I/R/(rmt 9 &F) (A2.2) 

with jl(nl) the spherical Bessel (Neumann) functions and rmt the muffin-tin radius. 
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